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Large Amplitude Linear 'JYDrations of Tensioned St r ings  
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The t ransverse motiox o f  a tensioned s t r i n g  driven 

parametr ical ly  by a moving end support i s  examined both 

ana ly t i ca l ly  and experimentally. The conditions required-  

C .  bo l i nea r i ze  the  

l a rge  amplitude range a t  constant frequency are developed 

eq.xitiocz cf net ion  fer tribratims ever a 
I 

and shown t o  be physical ly  rea l izable .  

INTRODUCTION 

The t ransverse vibrat ions of a tensioned s t r i n g  mounted between two 

r i g i d  end supports i s  a c l a s s i c  prpblem when t h e  amplitude of v ib ra t ion  

i s  s m a l l  and t h e  i n i t i a l  tension i n  t h e  s t r i n g  is  unal tered by i t s  motion. 

Several  analyses have been made of t h e  nonlinear regime encountered when, 



= \  
- 2 -  

1 t ,  

r 

I 
Y 

U 

the motion of t h e  tensioned s%r%g i s  large enou-g'n t o  9nf"luecce the  t e n -  

s ion.  1,2~3,Lx mere has Seen recent i a te res t  i n  t're a;qiicr2cioc of ths  

v ib ra t ing  s t r l -ng  t o  various neasuremnt aze sezsing proLlens, for exaxple, 

measuring l i n e a l  motions alozg or perpendicular t o  t he  res t  ax i s  03 Yiie 

s t r i n g  and measuring angular xo-kion about i t s  rest axis. I T  s m a l l  

amplitudes a r e  used i n  such appl icat ions,  l i n e a r  equations describe t h e  

string motion b u t  complex measuring apparatus must be used. 

tude nonlinear v ibra t ion ,  on t h e  o ther  hand, i s  character ized by complex 

Large axp l i -  

d r ive  requirements ( b p o s e d  by s t a b i l i t y  considerat ions)  and i fhe ren t  

l o s ses  i n  accuracy and r e l i a b i l i t y  associated with these  added conplexi t ies .  

I n t u i t i v e l y  it appears pos:;ible t o  obtain l a rge  amplitudes with essen- 

t i a l l y  no change i n  na tu ra i  frequency with amplitude if the  supports a r e  

nioved i n  a manner' t o  o f f s e t  incj?eased tens ion  due t o  6el leczion.  lu'itn 

t h i s  i n  mind we w i l l  inves t iga tc  t h e  large amplitude v ib ra t ion  of a s t r i n g  

under approxklately constant.tension f o r  t h e  purpose of dezonstrat ing the  

f e a s i b i l i t y  of i t s  wbil izat ion as a l i n e a r  element i n  sensing systems. 

MOTION OF A SmING V N X R  AP1ROXIIIATELY CONSTW'iT !I!E?jSION 

Let us consider a s t r i n g  u d e r  a tens ion  T = To + A T ( s , t )  where 

AT(s , t )<<  To 

average tens ion  equal t o  To. 

of operat ion w i l l  b e  apparent l a t e r .  

and l e t  us allow it t o  v ib ra t e  s o  t h a t  it has a constant  

'Fne r e l a t i v e  s ign i f icance  of t h i s  choice 

Since t h i s  condi t ion might be 

achieved, for example, by appro:?riate con t ro l  of t h e  axial  motion of one 

of t h e  end supports,  l e t  us i n i t i a l l y  a s s m e  t h a t  t h e  s t r i n g  i s  mounted 

(as shown i n  Fig.  1) between t w 3  r i g i d  end supports,  A and B, wi th  A 

taken as t h e  f ixed  reference f o r  our coordinate system, and B allowed 

r 

Fig. . < 
t o  have motion along the rest axis  of t h e  s t r i n g .  

w i l l  be  those normally invoked: 

Additional a s s u q t i o n s  
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a )  Tne propagatiorA t h e  L I C ~ ~  - ~ h c  st r ia2 is srqsI-1 co.;llss~-ed to t h e  

period of transverse vi,jratioa. 

The forces  introduced S;;r i h e  ber-c;lng of the stri,?g sA-e negl igible .  b )  

c )  The motion of the  s t r i r g  i s  confined t o  The x-y plane.  

d )  

The parefal dfflercntfal bt-itlteldrns dc3crTblng the motion of the a t r l n g  

The damping forces  are negl igible .  

are : 

For t h e  norrelzt ::e :,dl1 rieghcz t h e  effec-b cf the  x-dircckcd zccc1cm- 

t i o n s  on the  tension d i s t r i b u t e e  along the  s t r i n g .  In  the  c l a s s i c a l  solu-  

t i o n  of Eq. (2)  ds i s  assumeii cqual t o  ck. For l a rge  def lect ions,  

however, t'nis assumption i s  unwzrran7;ed5 and w i l l  not be m d e  a t  this  tkLe .  

Considering only t h e  stesdy-stat2 so lu t ion  f o r  s t r i n g  motion i n  t h e  s-y 

plane and i n  t h e  fundamental mode, the  well-known so lu t ion  for Eq. (2)  i s  

y ( s , t )  = yo sin(jts/so) s inwot  (3) 

where wo i s  t h e  low amplitude na tura l  frequency of t h e  s t r i n g .  

One important assumption mzde i n  reaching this so lu t ion  w a s  t h a t  t'ne 

tens ion  remains constant. This assumption implies t h a t  t h e  motion of ti?e 

support block B would be so constrained as t o  hold the  instantaneous 

value of the  tension, measured rlong t h e  s t r i n g ,  equal t o  the  tension, To. 

Whether or not t h i s  condition cE.n be achieved i s  t h e  next question t o  exmine.  

Let us note f i r s t  t h a t  f r o c p u r e l y  geometrical considerations 

(ax)2  = ( d s ) 2 [ i  - (;y/as)2~ 



The p a r t i a l  derivative of y with respect t o  s can be obtained from 

Eq. ( 3 )  and inserted i n  the above equation t o  provide 

(&)2 = 1 - (2yO2/so2) sin2wot cos2(~s /so)  1 (4) 

Taking the square root of both sides of t h i s  equation and making the ser ies  

approximation fo r  the square root of the quantity i n  brackets, one obtains 

the approximate expression 

[1 - (fi2yO2/2so2) sin2wot cos2(fis/sO)]ds 

and integrating t h i s  equation gives 

x = s - (~5y,'/4s~~)s sin2wot - (r(yO2/8s0) sin(&s/so) sin2wot ( 5 )  

Evaluating Eq. (5) a t  the point s = so, we obtain the expression 

xD = so - (~5~~/4s,) sin2wot 

which describes the motion of the end block required t o  maintain a constant 

tens ion. 

The solution of the p a r t i a l  d i f fe ren t ia l  equation i n  y has produced 

s-y frequency and shape equations fo r  the motion of the s t r ing i n  the 

piane,' and has provided the equation of motion of the end support required 

t o  maintain a constant average tension. 

t i o n  that tension i s  uniform along the string. In  examining the va l id i ty  

of t h i s  assumption, l e t  us assume tha t  x accelerations a re  produced by 

a combination of two forces: f irst ,  the x-directed force result ing 

from the constant tension component and the  curvature of the string; 

second, the additional x-directed force (not accounted for  by the com- 

ponent introduced by the curvature and the i n i t i a l  tension)required t o  

It has s t i l l  required the assump- 
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satisf‘y the shape and frequency equations already derived. 

component w i l l  r esu l t  i n  a time varying tension distribution along the 

s t r ing.  If we derive the expression describing t h i s  d i s t r ibu t ion  as a 

function of the deflection, yo, and compare the magnitude of the tension 

variations with the  magnitude of the i n i t i a l  tension, t h i s  comparison w i l l  

This la t ter  

allow us t o  judge the va l id i ty  of the assumption tha t  forces introduced by 

x accelerations a re  negligible and thereby t o  determine the  deflection 

region f o r  which t h i s  assumption is valid. 

The forces act ing i n  the x direction are described by Eq. (1) 

where 

T = To + A T ( s , t )  

If we solve the above equation f o r  T using the expression for x given 

by Eq. ( 5 ) ,  we obtain 

2f12s2 cos2wot ) ( 7 )  ( SO SO2 

&S 1 + cos - - cos2wot - - 

Since the i n i t i a l  formulation requires tha t  the instantaneous value of the 

tension averaged over the length of the s t r ing  be constant and equal t o  

To, we may write 

Substituting Eq. (7) f o r  T/To, integrating, and solving f o r  the constant 

of integration, we obtain 

G a  
A“”” 



, 

axd, hence, 

From t h i s  equation we obtain 8, ;:.axinurn value f o r  tension va r i a t ion  or" 
n 

c 

Thus, when the  average tension of t he  s t r i n g  i s  maintained instantaneously 

equal t o  

(OT/To)= = 0.05 i s  to le r2blc ,  the  corresponoing range 02 

Eq. (3) i s  va l id  i s  ya/so 5 O.C,55. 

To7 and an instantarkems ma;cimr:i l o c a l  tension va r i a t ion  of  

yo f o r  which 

For pu-rposcs of C L , ' r  ---^..I --- ---- - - _ ) -  - - - * - l - -  u i i - 3  p a p c A  , he uI L pl . L I L L  iiy CGiLCe13i.zL t ~ l t l l  the CLU- 

a c t e r i s t i c s  of a s t r i n g  driven by t h e  motion of  an end support so  as  t o  main- 

t a i n  i t s  average tension constar t .  It i s  interest i r ig  t o  note,  however, t h a t  

._I  t h e  approach used above can Se :,?>2Lied t o  the strl-a;: v;arrti;=g Zetween f ixed  

end supports t o  y i e ld  a soiu;io;i wnich should apply over a l a rge r  range of 

v ib ra t ion  amplitudes than those derived 'oy the  c l a s s i c a l  ana lys i s .  8 

NOTION OF T € E  ST-XNG FOR sin2wt EXD DRIm 

The ana lys i s  presented akove has not required t h e  bas ic  assumption 

t h a t  ds = d x  nor the  implied sssumption t h a t  an element of t h e  s t r i n g  

mst remain i n  the  v e r t i c a l  i n t z r v a l  between 

been l imi ted  t o  w = wo. A mor'? complete understanding of t h e  s t r i n g  

motion requi res  examination o f  i ts  motion for 

x and x 4 nX,  b u t  it has 

w f wo aad i t s  s t a b i l i t y .  

Previous analyses of str2nS motion have been made i n  t h e  x-y coor- 

d ina te  system. I n  o rde r  t h a t  the r e s u l t s  of our ana lys i s  or' Lcotion a t  ? re-  

quencies o ther  than wo and GUT ana lys i s  of s t a b i l i t y  can be mre  read i ly  
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compared with other  analyses, it is convenient a t  t h i s  point  t o  t r e a t  these 

problems i n  the  more conventiona:L coordinates,  making the  s m a l l  amplitude 

approximations and assuming t h a t  ignoring the  e f f e c t  of t h e  moving bound- 

a ry  does not s ign i f i can t ly  affect  t h e  r e s u l t s .  The r e su l t i ng  equation f o r  

the  def lec t ion  of t h e  s t r i n g  for the constant tension case i s  then 

y ( x , t )  = yo s i n  LE sinwot 
SO 

It i s  c l e a r  t h a t ,  if t he  values of 

t h e  displacements of an element of t h e  s t r i n g  obtained from both t h e  s coor- 

yo/so and s are s u f f i c i e n t l y  r e s t r i c t e d ,  

d ina te  ana lys i s  and the  x coordinate ana lys i s  are e s s e n t i a l l y  equal.  Being 

cognizant of t h i s  comparison for the spec ia l  case where w = wo we w i l l  exam- 

but  i s  allowed t o  vary with t ime, and w i s  allowed t o  assume values o ther  

than wo. The frequency response and s t a b i l i t y  c r i t e r i a  r e su l t i ng  from t h i s  

ana lys i s  w i l l  be checked experimentally. 

The motion of a s t r i n g  under i n i t i a l  tension, To, supported between one 

s t a t iona ry  end support and a second end support moving with an amplitude 

Xd' cos 2wt (Fig.  1) has been considered by Quick.' ' The equation of motion 

f o r  such a s t r i n g  i s  

a2y EELXd' cos2wt + Ea - i S o  1 rzr dx- 1 a2y m -  = [To + - a t2  SO SO 2 ax i ax2 (9)  

where m i s  t h e  mass per  u n i t  length, E i s  Young's modulus, and a i s  the  

i 

cross-sec t iona l  a rea  of t h e  string. The der ivat ion of th is  equation requi res  

t h a t  t h e  amplitude of v ibra t ion  -oe s u f f i c i e n t l y  small t h a t  t he  s ine  and tan-  

gent of the def lec t ion  angle can be assumed equal.  

t h e  above equation represent  the i n i t i a l  tension, t h e  tension due t o  d r ive r  

The terms i n  bracke ts  i n  
i 

motion, and t h e  tension due t o  change i n  a rc  length,  respec t ive ly .  For t h e  

term involving the  a rc  length,  the  approximation has been made t h a t  



. .  . _ ~ .  
, 

The propagation time along the s t r ing is  assumed t o  be small compared t o  the 

period of transverse vibration, and the forces introduced by the bending of 

the s t r ing  are assumed negligible. 

considered. 

Only planar motion of the s t r ing i s  

I 

c 

The motion of a s t r ing driven by the axial  motion of an end support 

can be analyzed i n  the same manner. moving with an amplitude -xd sin2wt 

The equation of motion f o r  t h i s  condition is :  

The trigonometric ident i ty  sin2wt = - - - 1 cos2wt 

Eq. (10) as: 

can be used to  write 2 2  

T h i s  equation i s  identical  i n  form t o  Eq. (9) and has the same boundary con- 

dit ions,  y(0,t)  = 0, y( so,t) = 0. 

separation of variables as outlined below. 

It can be solved by the technique of 

If y(x,t)  = F(x) G(t) , the resulting ordinary d i f fe ren t ia l  equation 

f o r  F(x) i s  

d2F(x) 
ax2 

+ lSn2F(X) = 0 

The solution t o  t h i s  equation i s  

In  order t o  sa t i s fy  the boundary conditions it i s  necessary tha t  Bn = 0 and 

Irn = (m/s0) where n i s  a positive integer. Considering the steady-state 

GEii m COPY 
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s o l u t i o n  f o r  t h e  fundamental mode, Eq. (13) becomes 

c 

. 

The time-dependent equation i s  

where nT.lo/so i s  t h e  i n i t i a l  s t r a i n  and 

k p a r t i c u l a r  so lu t ion  f o r  t h i s  equation can be obtained i f  an  approximate 

s o l u t i o n  of t h e  form Wnen t h i s  

so lu t ior ,  i s  subs t i t u t ed  i n t o  Eq. (15), t h e  r e s u l t i n g  e ,qress ion  c m s i s t s  

G ( t )  = K, s i n w t  + K3 s in3u t  i s  assumed. 

of terms i n  s in(2n+l)wt;n = 0, 1, 2, . . . . If t h e  c o e f f i c i e n t s  of t he  

sinkt a36 sin3wt t e r n s  a r e  eqcateci t o  zerc ,  t h e  Tollcwirg r e l a t i e n s h i p s  

a r e  obtained 
7 

Thus t h e  s teady-s ta te  so lu t ion  t o  Eq. (11) is reasonably we l l  approximated 

by 

?(X y ( x , t )  = (y, sinwt + y3 sin3wt) s i n  - 
SO 
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It may be noted t h a t  t he  3 w t  

r egard less  of t h e  d r ive  anpl i tude .  This condi t ion a l s o  r e s u l t s  i n  the 

t ens ion  being constant  a t  t h e  value 

frequency t e r m  disappears i f  u = wo 

To. 

I n  order  t o  determine whethey tnc  motion of t h e  s t r i n g  described by 

Eq. (15)  is s t a b l e ,  it is  necessai'y t o  examine t h e  e f f e c t  of applying a 

pe r tu rba t ion  t o  t h e  p a r t i c u l a r  s o h t i o n .  

w i l l  d i e  out  if t h e  so lu t ion  i s  szable. 

s u b s t i t u t e  t he  funct ion 

t h a t  t h e  r s s u l t i n g  equatiorl i s  i d z n t i c a l  i n  form with t h e  ivhthieu equa- 

L i u r I  d i iz i i  iias a weii-estd.JiisiieG c r i  i e r ion  Tor s t&i i i? ;y .  ivaiting zn i s  

sGbs t i tu t ion  f o r  G(T) i n  Eq. ( 2 . 5 )  and neglect ing terms i n  a2 and a3 

one obta ins  t h e  r e s u l t i n g  equation 

The e f f e c t  of the per turba t ion  

To be more e x p l i c i t ,  we w i l l  

G(t) = G , , ( t )  + a( t )  i n t o  Eq. (15) and show 

L- - 

Since K 3  << K1 

7 

G; z K , ~  sin2wt 

Eq. (18) becomes 

The Mathieu equation wr i t t en  i n  t'ne.. s tandard form i s  

- d2 z + (w'p i 16w2q cos2wt)z = 0 
d t2  



%> o for  q 
a 0  

Figure 2 i s  a graphic representation of 

It is  evident tha t  t h i s  equation is  ident ical  t o  Eq. (19) if 

The oscil latory motion described by t h i s  equation i s  stable i f  any of the 

conditions p > (149):  p < (1-8s) f o r  q > o or  p < (1+8q), p > (1-8q) 

for 

stable oscil lations can be obtained if e i ther  

q < 0 are satisfied. When these criteria are applied t o  Eq. (19) , 

or  

< O  

the  s t ab i l i t y  c r i t e r i a  fo r  the vibrat-  

ing s t r ing  driven with a -q sin2wt 

Fig. 2 shows tha t  the oscil lations are s table  for  any amplitude. 

forcing function. An examination of 

Equation (15) can a l so  be examined t o  establish the conditions necessary 

t o  start oscil lations by means of a sin2wt end drive. For very small 

amplitudes, the cubic term can be neglected and Eq. (15) becomes 

Xd u2 cos2wt 1 G ( t )  = 0 

We are  now interested i n  instabi l i ty;  t h a t  is, conditions t h a t  make small 

osci l la t ions grow. From Eq. (20 ) ,  the c r i te r ion  fo r  ins tab i l i ty  i s  



. 

1 - 89 < p < 1 + 89. 

gives the relationship 

Expressing t h i s  condition i n  the parameters of Eq. (21) 

which must be sa t i s f ied  t o  start oscil lations.  This c r i te r ion  i s  shown i n  

Fig. 2. 

It can be concluded f rom an examination of the s t a b i l i t y  c r i t e r i a  tha t  

end motion w i l l  vibrate with 

By contrast, 

the  s t r ing  parametrically driven by a 

s t a b i l i t y  a t  large amplitudes over a wide frequency spectrum. 

large amplitude motion of strings driven by transverse forcing functions 

are characterized by unstable behavior, such as the "jump phenomenon" 

(sudden s h i f t s  from one mode of vibration t o  another a t  a given frequency). 

For purposes of comparison it i s  interesting t o  consider the equations 

sin2(& 

as obtained by Quick' for the displacement of a s t r ing  driven by an end 

motion of the form x,=J' cos2ut. The displacement i s  

y(x, t )  = [(y, sinwt + y3 sin3wt)l sin(fix/so) 

where 

The s t a b i l i t y  c r i t e r i a  which must be sa t i s f ied  are 



and 

Tne i n i t i a l  s tar t  conditions are 

and 

?The condition necessary f o r  l i nea r i z lng  the  equation of motion and maintain- 

ing constant tension ( i . e . ,  no iiy:;mic coqorxn t  of tension, b.;t t ens ion  

wi;i  not be equal t o  To) for this  forc ing  lunct ion as obtained from Eq. ( 2 3 )  

i s  

This condition ind ica tes  t h a t ,  unlike t h e  case of t h e  sin"wt urive,  t h e  

s t r i n g  cannot be operated l i n e a r l y  a t  i t s  low-anplitude n a t u r a l  frequency, wo, 

b u t  must be operated a t  a frequency governed by t h e  amplitude. 3espite "ne cou- 

? l i n g  of frequency ana a q l i t . u k ,  it i s  Lqoi-tznt t o  note t h a t  the response of 

an instrwrznt  using a s t r i n g  u r i w n  e i t h e r  as suggested by Quick' or as sug- 

gested by t h i s  paper can be 1inea:rized by the  use of appropriate e l ec t ron ic  s i g -  

nal conditioners.  When the  s t r i n g  i s  driven by a n  axial su;sport motion 

of the form X d '  cos2wt, however, -the input  c omand s i g n a l  must con t ro l  

both a change of driver amplitude i n  accordance with t h e  eqressio;;  
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Xd'= ri2yl2/8s0 

t h e  expression 

as suggested by t h i s  paper, t he  input must cont ro l  t he  d r ive r  amplitude 

i n  accordance with the  expression 

can be allowed t o  remain f ixed  a t  

The s impl i f ica t ion  of t he  system thus achieved is considerable.  

and a simultaneous change i n  frequency i n  accordance with 

w2 = wo2[(x</AL0) f 11. I n  the  case of t he  s t r i n g  driven 

:Cd = 1 1 ~ y ~ ~ / 4 s ~  while t he  frequency 

ioo, independent of dr ive  amplitude. 

It i s  of fu r the r  i n t e r e s t  t o  compare d i f f e r e n t  methods of dr iving 

the  s t r i n g  on the  b a s i s  of t he  time-averaged s t r a i n  induced i n  the  string 

as a funct ion of v ibra t ion  amplitude. Without deriving the exact f re-  

quency relationshipsinvolved, it i s  apparent t h a t ,  s ince  t h e  change i n  

s t r a i n  i s  r e l a t ed  t o  the  change i n  frequency, it provides a measure of 

t h e  system nonl inear i ty .  For the  drive method suggested by t h i s  paper 

( t h e  sin2wot d r ive )  t he  s t r a i n  i s  forced t o  remain zero. For a f ixed  

end support system, where the  s t r i n g  i s  driven t ransversely,  t h e  change 

i n  s t r a i n  i s  given by 

the  cos2wt end drive,  t h e  change i n  s t r a i n  i s  given by 

& / s o  = ~ 1 ~ y ~ ~ / 8 s ~ ~ .  

& / s o  = fi2yo2/4So2. For l i n e a r  operation with 

. 

The experimental apparatus used t o  inves t iga te  t h e  motion of t h e  s t r i n g  

i s  shown i n  Fig. 3. 

mounted a t  one end of a r i g i d  frame. 

was at tached t o  the  c o i l  form which was at tached t o  t h e  frame by two sets 

An electromagnet having an AC c o i l  and a DC c o i l  was 

The moving end support of t h e  s t r i n g  



, 

of f lexures .  

by means of a displacement transducer which measured the  capacitance 

change between the  moving s t r i n g  and a fixed p la t e .  

moving end support was determined from the  capacitance change between a 

f ixed p l a t e  and a p l a t e  a t tached .to the moving end support. 

resonance of the  electromagnetic dr iver  was approximately 5 cps. 

resonances of the support s t ruc ture  were observed a t  other  frequencies.  

Data were not taken at these frequencies i n  order t o  avoid spurious e f f e c t s  

of uncontrolled forcing funct ions.  

o s c i l l a t o r  and power amplifier while the current  i n  the DC c o i l  was adjusted 

i n  the following manner: 

The s t r i n g  amplitude, yo, was measured both op t i ca l ly  and 

The motion of the 

The p r i n c i p a l  

Secondary 

The AC c o i l  was driven by an audio 

The spacing between the  p l a t e  was measured w i t h  

+LA , -+%.4nn o u A r l l g  at r e s t .  me string TGG %her, set ic z~ti~:: by app ly i~g  2 c u ~ e r ? t  

I, cos2wt 

motion, A C O S ~ W ~ ,  was measured. 

and adjusted so that  the  r e s t  pos i t ion  of the end support was displaced 

inwardly an amount A. 

A - A cos2wt=* sin'wt. 

t o  the  AC c o i l ,  and the  amplitude of the corresponding dynamic 

A current  was then applied t o  the  DC c o i l  

The net  inward motion of t he  end support was then 

RESULTS 

The amplitudes which could be examined experimentally were r e s t r i c t e d  

by end dr iver  resonances and power l imi ta t ions  t o  values of 

than 0.0175 (corresponding t o  peak-to-peak displacements less than 1.4 cm) ,  

so  t h a t  the  f u l l  range of displacement amplitudes considered i n  the theory 

could not  be explored. 

diameter n icke l  s tee l  wire 40 cm lop@; are presented i n  Figs. 4 and 5 .  

Figure 4 shows yo, t h e  maximum t ransverse amplitude, p l o t t e d  as a func- 

t i o n  of w/wo f o r  various values of Q where t h e  end driver motion is  

yo/so less 

The re su l t s  of tests performed with a 0 . 0 ~ 7 6  cm 

Y 
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'Xd sin2wt. The t h e o r e t i c a l  vahEsl of yo obtained from Eq. (16) a r e  

represented by the  s o l i d  curves. 

wire with a d r ive r  motion 

amplitude na tu ra l  frequency, wo, w z s  obtained from t h e  i n i t i a l  s tart  

behavior ( i . e . ,  wo 

be most e a s i l y  i n i t i a t e d ) .  A b e t t e r  value f o r  wo was then determined by 

keeping frequency constant and v ibra t ing  the  wire a t  seve ra l  d i f f e r e n t  

amplitudes. wo, and t h i s  value was 

used f o r  a l l  o ther  ca lcu la t ions  r e l a t ed  t o  t h i s  i n i t i a l  tension.  Figures 2 

and 6 show the  regions where vibrat ions can be i n i t i a t e d  and the  regions i n  

which s t ab le  o s c i l l a t i o n s  e x i s t  for dr ive r  motions of 

Figure 5 is a s imi l a r  p l o t  f o r  the  same 

Xd'cos2b)t. An approximate value f o r  the  low- 

was taken t o  be t h a t  frequency a t  which v ib ra t ion  could 

Equation (18) was then solved f o r  

sin2wt and cos2wt, 

Tne ex-peiihiieiital poifits fol- 1 l s t a r t  -Gpfl ar,& l l2---  ULUY uulr A,.+ 11  QLG "...A 

also p l o t t e d  on these  f igures .  

The experimental r e s u l t s  show t h a t  t h e  s t r i n g  motion described by the  

ana lys i s  co r re l a t e s  with i t s  measured motion both i n  a vacuum and i n  the  

presence of a i r  damping.9 For frequencies o ther  than wo t he  s t r i n g  

motions obtained by t h e  sin2wt drive and t h e  cos2wt dr ive  are e s s e n t i a l l y  

equivalent .  

hl = wo 

motion of t he  s t r i n g  forced by a sin2wt end dr ive.  By cont ras t ,  t h e  

conditions required t o  l i n e a r i z e  the equation of motion of t h e  s t r i n g  forced 

It can be seen from the dot ted l i n e  of Fig. 4, however, t h a t  

i s  p rec i se ly  t h e  condi t ion required t o  l i n e a r i z e  t h e  equations of 

by a 

changes i n  amplitude with la rge  changes i n  frequency. 

system a t  conditions o ther  than those shown by t h e  dot ted  l i n e  would involve 

l a rge  cyc l i c  changes i n  tension, 1im;ted operat ing l i f e t i m e  due t o  f a t i g u e  

caused by those changes, and would require  a s i g n i f i c a n t l y  more complex 

con t ro l  system t o  s t a b i l i z e  t h e  nonlinear behavior of t h e  s t r i n g .  

cos2wt end dr ive  (see dot ted l i n e  of Fig. 5 )  involve co r re l a t ing  s m a l l  

Operation of e i t h e r  L 
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Clearly then,the proposed sin2wt end dr ive  o f f e r s  s i g n i f i c a n t  advan- 

tages .  

CONCLUDING REMARKS 

The equation of motion of a vibra t ing  s t r i n g  and t h e  form of t h e  para-  

metr ic  dr ive required t o  obta in  e s sen t i a l ly  constant tension and therefore  

a l i n e a r  equation have been derived. By t he  use of s-y coordinates,  an 

analysis of the  motion has been made, which is  not e n t i r e l y  rigorous bu t  

has enabled us t o  judge the  amplitude range f o r  which the  constant tens ion  

assumption i s  va l id ,  and obta in  a f i r s t  approximation of t he  func t ion  which 

descr ibes  the  s m a l l  deviat ion of tension from the  assumed constant value. I 

Several  riletiiods of physical ly  cvnt ro i i ing  t i e  tens ion  'nave been shown t o  

produce e s s e n t i a l l y  equivalent r e s u l t s .  Results of a l e s s  p rec i se  ( x , t )  

ana lys i s  (used because of t h e i r  canonical form) then allowed us  t o  study 

s t a b i l i t y  c r i t e r i a .  Experimental r e s u l t s  over moderate amplitude ranges 

show good co r re l a t ion  with the  theory, and f u r t h e r  ind ica te  t h a t  t h e  e f f e c t  

of air damping (ignored i n  the  der iva t ion  of t he  equations of motion of the  

s t r i n g )  is  negl ig ib le .  The analysis  is  shown t o  apply, therefore ,  t o  l a rge  

S i l i t u d e  s t a b l e  v ibra t ions  with 6m'ping. 

4 
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:FOOTNOTES 

'We H. Quick and G.  A. Barnes, EM-262-482, & ~ - m ~ - 6 2 - 8 9 8 .  

2N. W. Mcbchlan, Theory of Vibrations (Dover, New York, 1951). 

3D. W. @l inge r ,  J. Acoust. SOC. Am. - 32, 12 (1960). 

*G. F. Carr ier ,  Quart .  Appl. Math. 3, 157-165 (1945). 

'Using t h i s  assumption t o  derive the  d i f f e r e n t i a l  equation generally 

involves summing the  y-directed forces ac t ing  on a p a r t i c u l a r  s t r i n g  

element and assuming bnpl ic i t ly  tha t  the  element whose motion is  thus 

described remains confined between x and x + dx. It is c lear ,  however, 

t h a t  these conditions a r e  not physically va l id .  

r igorously,  one must develop the  equations t h a t  describe the composite 

motion of an element moving i n  a n  arc;  or,  a l t e rna t ive ly ,  derive the  equa- 

t i o n s  vhich describe the  notion of t he  varying element of t he  s t r i n g  con- 

ta ined  between x and x + dx. 

mathematical complexities which may be avoided i f  the t ransverse def lect ion,  

y, i s  analyzed as a function of  ( s )  and (t) instead of the  normal var iables  

(x) and (t). Further, t he  use of t he  s-y coordinate system eliminates 

To solve the  problem more 

Eliminating t h i s  assumption introduces 

the  need f o r  working with a boundary value problem where one of the  boundaries 

( t h e  moving end support) i s  i n  motion i n  the  x d i rec t ion .  After  t he  p a r t i a l  

d i f f e r e n t i a l  equation r e l a t ing  y, s, and t i s  solved, y ( x , t )  can be derived. 

'For the  sake of completeness, it would now be des i rab le  t o  use Eqs. ( 3 )  

and (4)  t o  derive 

reference.  

inverse  of t he  function E[ (ns/s0)-(x/2), (xy/so) sinwot] where E is an 

e l l i p t i c  i n t e g r a l  of t he  second kind. y (x , t )  

y ( x , t ) ,  describing the  motion i n  a more familiar frame of 

Integrat ing Eq. (4) t o  determine s = f (x , t ) ,  however, involves the  

I 

It is apparent, then, t h a t  

cannot be expressed i n  terms of the simple algebraic,  c i r c u l a r  o r  hyperbolic e 
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functions of elementary mathematics. An approximate solution for y(x,t) 

can be obtained from Eq. (5) .  This solution is  

KX y (x , t )  = yo sinwot s i n  fix - [1+ K3y,2x cot - sin2wot 
S O  bo3 SO 

7This condition has the desired character is t ic  t h a t  the  length of the 

s t r ing  is then unchanging regardless of i t s  modulus of e l a s t i c i ty .  

it i s  worthwhile t o  consider several other operating conditions which s t i l l  

meet the condition tha t  

deviations. While the la t te r  cases do not hold the average tension quite 

constant and therefore allow some overall stretching o r  relaxation of the  

s t r ing,  they may be easier  t o  implement f o r  some applications. 

the many possible a l ternat ive conditions are outlined below: 

When T is  instantaneously equal t o  To a t  s = 0 

However, 

AT << To and examine t h e i r  associated tension 

A f e w  of 

and 

When a constant force i s  applied by' the s t r ing  on the driven support, t ha t  is, 

2J12s2 cos2wot + at2 cos2wot - 2 cos2oot + n2y02 2JlS 

8SO 

- - - T -=I+- 
TO SO SO2 

2 

and 
2 Yo (E)mu 24 - SO2 
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When T i s  instantaneously maintained equal t o  To a t  s = so 

and 

2 Yo e)ma 24 - SO2 

I n  the  discussion above one support has been f ixed  while the o ther  has 

been constrained t o  follow 'the x component of t he  s t r i n g  motion. An 

a l t e r n a t i v e  phys ica l  arrangement might allow no x motion a t  the center  

while constraining both supports t o  follow the 

When the tens ion  averaged along the length of t h e  s t r i n g  i s  instantaneously 

equal t o  To 

x motion of t h e  s t r i n g .  

2Jr2s2 cos2wot ) cos2wot - - 2rrs at2 - + -  
60 3 SO2 

-=I-- T Jr2y02 (cos 
TO 8S02 

and 

Yo" 
@)ma 9 - SO2 

This is  the  b e s t  operating condition of those c i ted ,  s ince  it provides 

the  g r e a t e s t  range of l i n e a r  uperation. 

choices which m i g h t  be physical ly  more a t t r a c t i v e  f o r  some experiments 

produce e s s e n t i a l l y  equivalent r e su l t s .  

However, a number of o ther  poss ib l e  

$ 

i; 
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approximations than those which have beeh used i n  the analyses presented above. 

Fortunately, one of the most si'gnificant resul ts  of our experimental Investiga- 

t ions was t o  'demonstrate, tha t  ' the  planar .motion of the s t r ing i s  relativeXy. ' ' 

unaltered by' air '  damping. . , The. string .wps driven a t  atmospheric pressure and' 

a t  a pressure of , to r r .  These results are presented i n  Figs '4 and 5 and. 

Indicate that no signlf.lcant' deviations Were observed' from the response pre- . 

dicted from Eqs .. (16): and . (23);' whickwe're derived without considering the ... 

ef fec t  of'demping. . 
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